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ABSTRACT

Let S be a closed connected subset of a Hausdorff linear topological space, @
the points of local nonconvexity of S, E the essential members of @, N the in-
essential. If § ~ Q is connected, then the following are true: Theorem 1. If @
# @ is countable, then S is planar. Theorem 2. If Q is finite and nonempty,
then card E 2 card N +1. Theorem 3. If S S R? and N is infinite, then E
is infinite.

1. Introduction

Let S be a subset of a Hausdorff linear topological space. A point x in S is a
point of local convexity of S (alternately, S is locally convex at x) iff there is some
neighborhood U of x such that if y,ze S N U, then [y,z] = S. If S fails to be
locally convex at some point ¢ in S, then q is called a point of local nonconvexity
(Inc point) of S.

Guay and Kay [1] have introduced the concepts of essential and inessential
points of local nonconvexity, defined below.

DEFINITION. A point g in S is called an essential point of local nonconvexity
of S iff for every neighborhood U of g there is at least one component W of
S NU ~ {q} such that g is an Inc point of ¢l W; an Inc point of S which is
not essential is called an inessential point of local nonconvexity of S.

Throughout the paper, Q denotes the set of Inc points of S; E and N denote
the sets of essential and inessential points of Q, respectively. S is closed and
connected, and S ~ @ is connected.
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2. A generalization of the theorem of Guay and Kay

In [1] it is proved that if Q is finite and nonempty, then S is planar. Theorem 1
of this paper is a direct generalization to the case for Q countable. The following
lemmas will be used in the proof.

Lemma 1. Let S < R* Q countable, and let n denote the largest integer j
for which the following is true: There is a convex subset C of S with dim aff C = j.
If seS~Q# &, then for every neighborhood U of s with U NS convex,
dimaff (U NS) =n. That is, U contains interior points of S in some n-dimen-

sional flat.

ProoOF. Assume the lemma fails for some neighborhood U of s, U N S
convex. Then dim aff (U N S) < n and, by our hypothesis, there are points of S
not in aff (U N S). Furthermore, since Q is countable and S ~ Q is connected,
we may select some point z of S~ @, z¢aff (U NYS).

Now, since S ~ Q is connected and locally convex, it is polygonally connected
[2], and thereis a polygonal path 4 in S ~ Q from sto z. However, aff (U N S)
Ncl(S~aff (U N S)) = 0, so some point of A must lie in Q, a contradiction. There-
fore, the lemma must hold.

LemMA 2. IfSS R S~ Q# &, and Q is countable, then int S # J (as a
subset of aff S).

Proor. We assume int S = (& in order to reach a contradiction. Since Q is
countable, S ~ Q necessarily has nontrivial convex subsets. Let n denote the
largest integer j for which a convex subset of S~ Q has interior points in RS,
and let C be a convex subset of S ~ @ for which dim aff C =n.

By our assumption, there are points of S not in aff C. Moreover, since Q is
countable and S is connected, there are points of S ~ Q not in aff C. Using the
fact that (aff C) Ncl (S ~ aff C) = Q, an argument similar to the proof of Lemma 1
shows that S~ Q cannot be polygonally connected. This is a contradiction.
Hence our assumption is false and we conclude that int S # .

COROLLARY. If SSRY, Q is countable, and scS~ Q# &, then every
neighborhood of s contains points of int S # (.

The following result by Gauy and Kay [1] is also needed.

Lemma 3. If [x,y]Y[y,z1< S and no point of Q lies in conv {x,y,z}
~ [x,z], then conv {x,y,z} < S.
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THEOREM 1. If Q # (F is countable, then S is planar.

Proor. Let x, y be points of S ~ Q such that [x,y] & S. Since S ~ Q is polygo-
nally connected, we may assume, without loss of generality, that for some z
in S~ Q,[x,z]Ulz,y] €S~ Q. Let = denote the plane determined by x, y, z.

If S & 7, there exists some point p of S not in 7. Since @ is countable and S is
connected, p may be chosen in S~ (. Moreover, since S~ Q is polygonally
connected, we may select p so that [y,p] =S~ Q.

Let Y = aff (r U {p}) and let T be the connected component of (S~ Q)NY
containing {x,y,z,p}. Then S, =cl T is a closed, connected subset of Euclidean
3-space and every Inc point of Sgisin Q. Also,since T=T ~Q<cclT~ Q <clT,
and T is connected, ¢l T ~ Q = S, ~ Q is connected. For the remainder of the
proof we will examine S, as a subset of R3,

By the corollary to Lemma 2, int S, # (J and every neighborhood U of y (in
R?) contains points of int So. Thus U contains points of S, not in 7. Assume that
U is chosen so that U NS, is convex. For some u in (U Nint S;) ~ #, conv
{z,y,u} ~ [u,z] contains no point of Q, for otherwise, Q could not be countable.
Since [z, y] Y [y,u] = So ~ Q, by Lemma 3, conv {z, y,u} < S,. Without loss of
generality, we may assume that u is selected so that conv {z,y,u} = So~ Q.
Since S, ~ Q is open in S, there is a neighborhood of conv {z, y,u} containing
no member of Q. There exists a neighborhood V of u so that for all t in ¥ N S,
[z,t] = So ~ Q.

Recall that ¥ contains points of int S,. For some ¢, in V, conv {x, z, 5} ~ [X, 0]
contains no point of Q. Since [x,z] U[z,1,] S So ~ Q, again, by Lemma 3,
conv {x,z,ty} S So, and we may select , so that conv {x,z,t,} S S ~ Q.

There is a neighborhood W of ¢, so that [x,t] £ Sy ~ Q for all t in W N S,,.

We have [x,t]U[t,y]1=So~Q for all t in WNUNS,. For some ¢, in
W NUNS,, conv {x,t,,y} ~ [x,y] contains no point of Q. By Lemma 3, this
implies that [x, y] = Sy, so [x,y] & S, a contradiction. Therefore S < #, comple-

ting the proof.

3. The cardinalities of E and N

We are interested in the relationship between card E and card N for both
finite and infinite Q. Guay and Kay have conjectured that for Q finite, card
E =1 (card Q + 1), and Theorem 2 shows that this is correct.

THEOREM 2. Let Q be finite and nonempty; and let m = card N, e = card E.
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Then e Z m + 1. Moreover, the bound of m + 1 is best possible for every m.

Proor. Clearly S is planar. The proof is by induction. If m = 1, let g be an
inessential Inc point of S. There is some neighborhood U of ¢ such that for each
component W of SNU ~ {q}, g is not an Inc point for cl W. Clearly there
are at least two components Wy, W, of S " U ~ {q}, and without loss of generality,
we assume there are exactly two. For U sufficiently small, U N Q = {q}, W; U {q}
is convex and is contained in some maximal convex subset C; of S, i =1,2,
Moreover, the connectedness of S ~ Q implies that each C; contains some essential
Inc point p; of S. It remains to show that p, # p,.

Let x belong to C; NC,. If x # ¢, then [x,q]=C, NC, and [x,q9) U
necessarily lies in W; N W,, a contradiction, since W,, W, are disjoint, Thus
C,NC,={q}, p1#ps,and if m=1, e=2.

Assume that for m < k, if S has at least m inessential Inc points, then S has at
least m + 1 essential Inc points. Suppose S has k inessential Inc points.

Examine the connected components of X ~ S. Since k = 1, X ~ S has bounded
components, and since Q is finite, there are finitely many components.

. Let {Vo, V1,"+} be a maximal sequence of bounded components of X ~ S such
that Vi, V;,, are adjacent (i.e. bdry ¥, nbdry V;,, # &), and for ¢; ebdry V;
Nbdry Vi, g;¢bdry Vi, 0 <. Clearly for g;ebdry ¥, Nbdry V,,,, q;€0.

Since § ~ Q is connected, the V; sets are necéssarily distinct and the sequence is
finite. Similarly, at most one V; is adjacent to an unbounded component of
X ~ 8§, so, without loss of generality, we may assume that ¥, is not adjacent to an
unbounded component. Clearly cl (V,) contains at least three Inc points of S, and
at least two of these are distinct from g,. Let Qo = cl (V) N Q.

For ¢&Q, ~ {qo}, there can be only one component of X ~ S containing ¢ in
its closure, since our sequence is maximal. Thus ¥, is the only component con-
taining ¢, ¢ must be an essential Inc point for S and not even an Inc point for
cl (SUV)=S,.

Certainly S, is closed, S, ~ @ is connected, and S, has either k or k — 1
inessential Inc points. By the induction hypothesis, S, has > k essential Inc
points.

If g, is essential for S,, then S, contains at least k — 1 essential Inc points
which are essential for S. Also Q, ~ {g,} contains at least 2 essential Inc points
for S which are not Inc points for Sy, so S has at least (k—1)+2 =k +1
essential Inc points.
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If g, is not essential for S, then every essential Inc point for S is essential for
S. Since Q, ~ {q,} contains at least two essential Inc points for S which we have
not counted, S has at least k + 2 essential Inc points, completing the proof.

Moreover, the bound of m + 1 is best possible, as the following example shows.

ExampLE 1. Let S be the set in Fig. 1. For any k, an appropriate adaptation
of the figure yields m =k, e=k + 1.

Fig. 1.

Since Theorem 2 yields such a pleasant relationship between the cardinalities
of E and N, one might expect a similar result to hold in case N is infinite. The

problem is more difficult (and more suprising) than it appears, as Theorem 3 and
Example 2 demonstrate.

DerINITION. Let T be a closed subset of R*. We say bdry T is locally arc
connected at x ebdry T iff there is a sphere U about x such that for ¥ a sphere
about x and V < U, ¥V Nnbdry T is arc connected.

THEOREM 3. If S is planar and N is infinite, then E is infinite.

Proor. We begin with a definition. Let Z = {B; B is the closure of a bounded
component of X ~ S}. We call ¥'={V,,V;,---} a chain in cl (X ~ S) iff the
following are true:

) Vie®, 05i<w

2) for V;e¥; 0 < i, there is some V, in ¥", k < i, such that V, NV, # (.

By an obvious application of Zorn’s lemma, any chain is contained in a maximal
chain. If ¥; #° are maximal chains, then?” N# = (.
To prove the theorem, consider two cases.

Case I. Assume that for every Inc point x, bdry S is locally arc connected at x.
We will show that every inessential Inc point of S is on the boundary of a member
of #. For g an inessentjal Inc point, choose a neighborhood U of ¢ such that g is
not an Inc point for ¢l X for any component K of U NS ~ {g}. Clearly U may be
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selected so that g ecl K for each component K, for otherwise we would violate
local arc connectedness. Therefore, (X ~ S) N U has at least two components, and
we will show that at least one of these components must lie in a bounded compo-
nent of X ~ S, and ¢ is indeed on the boundary of a member of #.

We begin by proving the following remark.

ReMARK 1. Each component Ko of U NS ~ {q} contains points in S~ Q.

ProoF. Since g is not an Inc point for ¢l K, there is some neighborhood U, of
g, Uy c U, for which U, Nnecl K, is convex. For x in Uy, N K,, we assert that
there is a neighborhood of x disjoint from every other component of U NS ~ {g}:
Suppose that for every neighborhood N of x, N € U, ~ {q}, N contained points
in other components of U NS ~ {¢}. Then since the sets K N N, K a component
of UNS ~ {q}, are pairwise disjoint, N Nbdry S could not be arc connected,
violating the definition of local arc connectedness. Thus there is a neighborhood
Ny of x, Ny = Uy ~ {gq}, for which N, 'S < K|, Since cl K|, is convex, x is a
point of local convexity of S, and x € S ~ Q, completing the proof of the remark.

Now if more than one component of (X ~ S) N U lay in an unbounded com-
ponent of X ~ S, then using Remark 1, we could select appropriate points of
(S ~ @) N U which could not be joined by a polygonal path in S ~ Q, a con-
tradiction. Thus some component of (X ~ S) N U lies in a bounded component
of X ~ S, and ¢ is on the boundary of a member of %.

Case I 1. For the present, we assume that each member of # contains at

most a finite number of inessential Inc points of S.

Case I 1a. Suppose that for every maximal chain 4, U . contains at most
a finite number m of inessential Inc points. If any chain contains infinitely many
essential Inc points, the proof is complete. Otherwise, each chain is finite. Thus
S.=8SU{B;Be%, B¢ #} has m inessential Inc points and at least m + 1
essential Inc points, using Theorem 2. For each maximal chain .#, since /4
consists of finitely many members of &, every essential Inc point for S, is nec-
essarily essential for S, and the Inc points corresponding to each S,, are unique.
Since N is infinite, there are infinitely many chains and infinitely many essential Inc
points of S.

Case I 1b. Suppose for some maximal chain #, U.# contains infinitely
many inessential Inc points. We assume that S has a finite number e of essential

Inc points to reach a contradiction.
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Since every member of # contains at most finitely many inessential Inc points
of §, clearly we may select some finite subchain ¥~ of .4, U ¥ containing at
least e inessential Inc points of S. For each inessential Inc point ¢ in U ¥;
select V,,, V,, in &, qgeV, NV,. Let # =¥ U{V,;i=12}. Then S, =
U {V; V¢# '} has at least e inessential Inc points and at most a finite number (since
W is finite).

Therefore by Theorem 2, S,, has at least e + 1 essential Inc points. However,
these are not necessarily essential for S.

For x essential for S,, and not for S, there is a maximal subchain of .#, call it
U, ={Ugy, Uy} with xe U, and U, ¢ #°. Moreover, no U; belongs to #”. For
otherwise (U #,) U (U#") would contain a closed curve A in (X ~ S) U Q with
x € 4. Since x is not essential for S, x is inessential for S, and by the argument in
Remark 1, distinct points of § ~ Q would necessarily lie interior to 4 and exterior
to A, contradicting the polygonal connectedness of S ~ Q.

Similarly, if x,y are distinct essential Inc points for S, and not for S,
cl (V%) Ncl(V%,) = . Again using connectedness and our hypothesis for case
11, U%, contains some essential Inc point of S.

Thus for each x essential for S,,, there corresponds a unique x, essential for S
and S has at least e + 1 essential Inc points. This contradiction implies that E is
infinite, completing case I 1,

Case 12. Suppose for some B in %, bdry B contains infinitely many inessential
Inc points. Clearly no two inessential Inc points in B lie in the same member of
% ~ {B}, for by an argument similar to that used in case I 1b above, this would
violate the polygonal connectedness of S ~ Q. Also, using Remark 1 and the
polygonal connectedness of S ~ Q, at most one inessential Inc point g, in B can
lie on the boundary of an unbounded component of X ~ S. Thus to each g # g,
in B, there corresponds a unique member B, of & ~ {B}. Again, by connectedness
of S ~ @, the B, sets are pairwise disjoint. For each B, let C, denote the closure of
a component of [(X ~ S) ~ B] U Q containing B,. The C, sets are disjoint, and
at most one C, can be unbounded. To each bounded C,, there corresponds a
unique essential Inc point of S, and case I is finished.

Case II. Assume that for some Inc point g of S, bdry S is not locally arc
connected at g. Since X ~ S is open, for each positive integer n and each 1/n
sphere D, about g, there is some ray from ¢ containing x,, y, in S N D, for which
xy)se X ~8S.
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Case I11. For the moment, assume that we may choose x,, y, distinct from
g. For each n, let C,;, C,, denote the closures of distinct components of
[(X ~8)~ (xpy)] VQ with (x,,y,) €C,;, i =1,2. We may select an infinite
collection € of bounded disjoint C,; sets, for otherwise it would violate the con-
nectedness of S ~ Q. To each C,; in €, there corresponds a unique essential Inc
point. Thus E is infinite.

Case I112. Suppose that there is some integer k such that for all n = k, one of
X,, Y, must be g. Select y, in S N D, with (¢,y,) S X ~ S. Let U, be the open
sphere having center g, radius | g ~ yo|. Since X ~ S is open, there is an open
sector of the disk U, lying in X ~ S and containing (g, y,). Let V¥, denote the
maximal open sector of U, having these properties. (Without loss of generality,
we may assume that the arc for V, has length less than =, for this fails to occur at
most once in our inductive construction.) If the segments [q,a], [¢, b] and the arc
ab bound V,, then each of (g, a], (g, b] contains some point of S. Thus we may
select points sy, t, in S N bdry V;, with (s, t,) interior to V. Then (sq, 1) S X ~ S,
Let C, be the closure of a component of [(X ~ S) ~ (so,2,)] U @ with
(S0st0) < Co.

Inductively, proceed as follows: Assume V;, C; are defined for 0 < j < i. Since
bdry S is not locally arc connected at g, there is some point y, of S N D, ; not on
bdry ¥V}, 0 £ j < i, and with (g, y;) € X ~ S. Define V;, s;, t; as previously shown.
If C; is the closure of a component of [(X ~ S) ~ (s;,t,)] Y Q with (s;, ;) < C;, C,
may be selected so that it is disjoint from each C;, 0 < j < i. Since each bounded C;
contains an essential Inc point of S and at most one C, is unbounded, there are

infinitely many essential Inc points of S, completing case II and finishing the
proof.

CorOLLARY. If Q is countable, then card E = card N.
It is interesting to note that N may be uncountable while E is countable, as

Example 2 shows.

ExampLe 2. Let S be the set in Fig. 2. Let x be the point (0,1), y the origin.
Then every point of the segment [x,y) is an inessential Inc point of S, while

E = {(t/n,0)} U{y}.
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