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ABSTRACT 

Let S be a closed connected subset of a Hausdorff linear topological space, Q 
the points of local nonconvexity of S, E the essential members of Q, N the in- 
essential. If S ,-~ Q is connected, then the following are true: Theorem 1./f  Q 
v6 ~J is countable, then S is planar. Theorem 2. If Q is finite and nonempty, 
then card E >__ card N +1. Theorem 3. If S ~ R 2 and N is infinite, then E 
is infinite. 

1. Introduction 

Let S be a subset of  a Hausdorff linear topological space. A point x in S is a 

point of local convexity of S (alternately, S is locally convex at x) iff there is some 

neighborhood U of x such that if y, z e S c3 U, then [y, z] _ S. I f  S fails to be 

locally convex at some point q in S, then q is called a point of local nonconvexity 

(lnc point) of S, 

Guay and Kay [1] have introduced the concepts of  essential and inessential 

points of  local nonconvexity, defined below. 

D~FXNITION. A point q in S is called an essential point of local nonconvexity 

of  S iff for every neighborhood U of  q there is at least one component W of  

S r U ~ {q} such that q is an lnc point of  cl W; an lnc point of  S which is 

not essential is called an inessential point of local nonconvexity of S. 

Throughout the paper, Q denotes the set of  lnc points of  S; E and N denote 

the sets of essential and inessential points of  Q, respectively. S is closed and 

connected, and S ~ Q is connected. 
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2. A generalization of the theorem of Guay and Kay 

In [1] it is proved that if Q is finite and nonempty, then S is planar. Theorem 1 

of  this paper is a direct generalization to the case for Q countable. The following 

lemmas will be used in the proof. 

LEMMA 1. Let S ~_ R k, Q countable, and let n denote the largest integer j 

for which the following is true: There is a convex subset C orS with dim aft C = j.  

I f  s E S ..~ Q ~ ;~J, then for every neighborhood U of s with U n S convex, 

dimaff (U n S ) =  n. That is, U contains interior points of S in some n-dimen- 

sional flat. 

PROOF. Assume the lemma fails for some neighborhood U of  s, U n S 

convex. Then dim aft (U n S) < n and, by our hypothesis, there are points of  S 

not  in aft (U n S). Furthermore, since Q is countable and S ~ Q is connected, 

we may select some point z of  S ~ Q, z ~ aft (U n s). 

Now, since S ,,~ Q is connected and locally convex, it is polygonally connected 

[2], and thereis a polygonal path 2 i n s  ~ Q from s to  z. However, aff(U n S )  

n cl ( S ~ a f f ( U  n S)) _ Q, so some point of~ must lie in Q, a contradiction. There- 

fore, the lemma must hold. 

LEMMA 2. I f  S ~ R k, S ~" Q ~ ~j, and Q is countable, then int S ~ ~j (as a 

subset of aft S). 

PROOF. We assume int S = ~ in order to reach a contradiction. Since Q is 

countable, S ,,~ Q necessarily has nontrivial convex subsets. Let n denote the 

largest integer j for which a convex subset of  S ~ Q has interior points in R ], 

and let C be a convex subset of S ,-~ Q for which dim aft C = n. 

By our assumption, there are points of  S not in aft C. Moreover, since Q is 

countable and S is connected, there are points of S ,~ Q not in aft C. Using the 

fact that (aft C) n cl (S ~ aft C) ~_ Q, an argument similar to the proof  of Lemma 1 

shows that S ~ Q cannot be polygonally connected. This is a contradiction. 

Hence our assumption is false and we conclude that int S ~ J~. 

COROLLARY. I f  S ~ R  k, Q is countable, and s~S,,~ Q ~ ~J, then every 

neighborhood of s contains points of in t  S # Z;. 

The following result by Gauy and Kay [1] is also needed. 

LEMMA 3. ]f Ix, y] U [y,z] ~ S and no point of Q lies in cony (x ,y ,z}  

N[x ,  z], then cony (x, y, z} ~ S. 
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TH~ORE~ 1. I f  Q # ~ is countable, then S is planar. 

PROOF. Let x, y be points of S ~ Q such that Ix, y] $ S. Since S ,-. Q is polygo- 

nally connected, we may assume, without loss of generality, that for some z 

in S ~ Q, Ix, z] u i-z, y] - S ~ Q. Let n denote the plane determined by x, y, z. 

I f  S $ 7r, there exists some point p of S not in n. Since Q is countable and S is 

connected, p may be chosen in S ~ Q. Moreover, since S .-. Q is polygonally 

connected, we may select p so that [y, p ] g  S .-. Q. 

Let Y = aft (n u {p}) and let T be the connected component of (S ~ Q) r~ y 

containing {x, y, z, p}. Then So ~ cl T is a closed, connected subset of Euclidean 

3-space and every lnc point of So is in Q, Also, since T = T ~ Q ~ cl T ~ Q ~ cl T, 

and T is connected, cl T ~ Q = So ~ Q is connected. For the remainder of the 

proof we will examine So as a subset of R 3. 

By the corollary to Lemma 2, int So # ~ and every neighborhood U of y (in 

R 3) contains points of int So. Thus U contains points of So not in n. Assume that 

U is chosen so that U n So is convex. For some u in (U h i n t  So)~  ~, cony 

{z, y, u} ,-, [u, z] contains no point of Q, for otherwise, Q could not be countable. 

Since [z, y] t_) [y, u] __ So '-' Q, by Lemma 3, cony {z, y, u} ___ So. Without loss of 

generality, we may assume that u is selected so that cony {z, y , u } _  So ,,, Q. 

Since So ~ Q is open in So, there is a neighborhood of cony {z, y, u} containing 

no member of Q. There exists a neighborhood V of u so that for all t in V r3 S, 

[z,  t]  ___ So ~ (2. 

Recall that V contains points of int So. For some to in V, conv {x, z, to} ~ Ix, to] 

contains no point of Q. Since Ix, z] U[Z, to] __ So ~ Q, again, by Lemma 3, 

cony {x, z, to} c_c_ So, and we may select to so that cony {x, z, to} ~ So ~ Q. 

There is a neighborhood W of to so that l-x, t] c_ So ~ Q for all t in W n So. 

We have Ix, t] u It, y] c_ So ~ (2 for all t in W n U N So. For  some tz in 

W N U c~ So, conv {x, tl, y} ~ Ix, y] contains no point of Q. By Lemma 3, this 

implies that Ix, y] ~ So, so I-x, Y-1 ~ S, a contradiction. Therefore S c__ re, comple- 

ting the proof. 

3. The eardinalities of E and N 

We are interested in the relationship between card E and card N for both 

finite and infinite Q. Guay and Kay have conjectured that for Q finite, card 

E > �89 (card Q + 1), and Theorem 2 shows that this is correct. 

THEOREM 2. Let Q be finite and nonempty; and let m - card N, e - card E. 
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Then e >->_ m + 1. Moreover, the bound of m + 1 is best possible for every m. 

PROOF. Clearly S is planar. The proof is by induction. If  m > 1, let q be an 

inessential lnc point of  S. There is some neighborhood U of q such that for each 

component W of S n U ,-~ {q}, q is not an lnc point for cl W. Clearly there 

are at least two components 14'i, W2 o r s  c~ U ~ {q}, and without loss of generality, 

we assume there are exactly two. For U sufficiently small, U n Q = {q}, W~ t3 {q} 

is convex and is contained in some maximal convex subset Ci of S, i = 1,2. 

Moreover, the connectedness o fS  ~ Q implies that each Ci contains some essential 

lnc point Pi of S. It remains to show that pl ~ P2. 

Let x belong to C~C~C2. I f x C q ,  then [x,q]c_Clc~C2 and [x,q) n U  

necessarily lies in W1 n W2, a contradiction, since W1, W2 are disjoint. Thus 

C t n C  2={q} ,  PaCP2,  and ifm__>l, e_>_2. 

Assume that for m < k, if S has at least m inessential Inc points, then S has at 

least m + 1 essential lnc points. Suppose S has k inessential lnc points. 

Examine the connected components of X ,-~ S. Since k __> 1, X N S has bounded 
components, and since Q is finite, there are finitely many components. 

Let {V o, V1,-"} be a maximal sequence of bounded components of X ,,~ S such 

that Vi, Vi+1 are adjacent (i.e. bdry V~ c~bdry V/+I ~ ~ ) ,  and for qi~bdryV/ 
~ b d r y  V/+a, qiCbdry V/+2, 0__<i. Clearly for qi~bdry Vi ~ b d r y  Vi+l, qi~Q. 

Since S ~ Q is connected, the V~ sets are necessarily distinct and the sequence is 

finite. Similarly, at most one V~ is adjacent to an unbounded component of 

X ,-~ S, so, without loss of generality, we may assume that Vo is not adjacent to an 

unbounded component. Clearly cl (11o) contains at least three lnc points of S, and 

at least two of these are distinct from qo. Let Qo = cl (Vo) ~ Q. 

For  c e Qo ~ {qo}, there can be only one component of X ,-, S containing c in 

its closure, since our sequence is maximal. Thus Vo is the only component con- 

taining c, c must be an essential lnc point for S and not even an lnc point for 

cl (S U Vo) = So. 

Certainly So is closed, So--" Q is connected, and So has either k or k -  1 

inessential lnc points. By the induction hypothesis, So has > k essential lnc 

points. 

If  qo is essential for So, then So contains at least k - 1 essential lnc points 

which are essential for S. Also Qo ~ {qo} contains at least 2 essential lnc points 

for S which are not lnc points for So, so S has at least ( k -  1 )+  2 = k + 1 

essential lnc points. 
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If  qo is not essential for So, then every essential lnc point for So is essential for 

S. Since Qo ~ (qo} contains at least two essential lnc points for S which we have 

not counted, S has at least k + 2 essential lnc points, completing the proof. 

Moreover, the bound of.m + 1 is best possible, as the following example shows. 

EXAMPLE 1. Let S be the set in Fig. 1. For any k, an appropriate adaptation 

of the figure yields m = k, e = k + 1. 

Fig. 1. 

Since Theorem 2 yields such a pleasant relationship between the cardinalities 

of E and N, one might expect a similar result to hold in case N is infinite. The 

problem is more difficult (and more suprising) than it appears, as Theorem 3 and 

Example 2 demonstrate. 

DEFINITION. Let T be a closed subset of R k. We say bdry T is locally arc 

connected at x e bdry T i f f  there is a sphere U about x such that for V a sphere 

about x and V ___ U, V N bdry T is arc connected. 

THEOREM 3. l f  S is planar and N is infinite, then E is infinite. 

PROOF. We begin with a definition. Let ~ = {B; B is the closure of a bounded 

component of X ~ S}. We call ~ =  {Vo, V1, ""} a chain in cl (X ~ S) iff the 

following are true: 

1) V ~ ,  0 = < i < o o  

2) for V~ E ~, 0 < i, there is some Vk in ~ ,  k < i, such that V~ ca Vk ~ ~ .  

By an obvious application of Zorn's lemma, any chain is contained in a maximal 

chain. If  ~ ~ are maximal chains, then ~ ca ~ = ~ .  

To prove the theorem, consider two cases. 

Case I. Assume that for every lnc point x, bdry S is locally arc connected at x. 

We will show that every inessential Inc point of S is on the boundary of a member 

of ~ .  For q an inessential lnc point, choose a neighborhood U of q such that q is 

not an lnc point for cl K for any component K of U n S ~ {q}. Clearly U may be 
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selected so that q ~ cl K for each component K, for otherwise we would violate 

local arc connectedness. Therefore, (X ~ S) n U has at least two components, and 

we will show that at least one of these components must lie in a bounded compo- 

nent of  X ~ S, and q is indeed on the boundary of  a member of g .  

We begin by proving the following remark. 

REMARK 1. Each component Ko of U t~S... (q) contains points in S,., Q. 

PRooF. Since q is not an Inc point for cl Ko, there is some neighborhood Uo of  

q, Uo --- U, for which Uo n cl Ko is convex. For  x in Uo n K0, we assert that 

there is a neighborhood o f x  disjoint from every other component of  U n S ~ (q}: 

Suppose that for every neighborhood N of x, N =_ Uo ~ (q}, N contained points 

in other components of  U n S ~ (q}. Then since the sets K n N, K a component 

of  U n S ,.- (q}, are pairwise disjoint, N n bdry S could not be arc connected, 

violating the definition of local arc connectedness. Thus there is a neighborhood 

No of  x, N O ___ Uo ~ (q}, for which No n S ___ K 0. Since cl K0 is convex, x is a 

point of  local convexity of S, and x E S ~ Q, completing the proof  of the remark. 

Now if more than one component of (X ~ S) n U lay in an unbounded com- 

ponent of  X ~ S, then using Remark 1, we could select appropriate points of  

(S ~ Q) n u which could not be joined by a polygonal path in S ~ Q, a con- 

tradiction. Thus some component of  (X ~ S) n U lies in a bounded component 

of  X ~ S, and q is on the boundary of  a member of &. 

Case I 1. For  the present, we assume that each member of ~ contains at 

most a finite number of inessential lnc points of S. 

Case I la. Suppose that for every maximal chain Jr', u . / /conta ins  at most 

a finite number m of  inessential lnc points. If  any chain contains infinitely many 

essential lnc points, the proof  is complete. Otherwise, each chain is finite. Thus 

S , , -  S U  {B; B ~ ,  B ~ t ' }  has m inessential lnc points and at least m + 1 

essential Inc points, using Theorem 2. For  each maximal chain . / / ,  since d /  

consists of  finitely many members of ~ ,  every essential lnc point for S,, is nec- 

essarily essential for S, and the lnc points corresponding to each Sm are unique. 

Since N is infinite, there are infinitely many chains and infinitely many essential lnc 

points of  S. 

Case I lb. Suppose for some maximal chain ~ ,  u ~t' contains infinitely 

many inessential lnc points. We assume that S has a finite number e of  essential 

lnc points to reach a contradiction. 
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Since every member of ~ contains at most finitely many inessential lnc points 

of S, clearly we may select some finite subchain ~e" of Jg, u ~conta ining at 

least e inessential lnc points of S. For each inessential lnc point q in u ~,  

select V~I, Vq~ in ~ ' ,  qEV~, NVq2. Let ~ K - ~ u { V q , ;  i = 1,2}. Then Sw--S 
u {V; Vr has at least e inessential lnc points and at most a finite number (since 

~ r  is finite). 

Therefore by Theorem 2, Sw has at least e + 1 essential lnc points. However, 

these are not necessarily essential for S. 

For  x essential for Sw and not for S, there is a maximal subchain of J/f, call it 

q/x - {Uo, U1, ""} with x ~ Uo and Uo ~ ~/'. Moreover, no Ui belongs to ~ .  For 

otherwise (U ~ )  u ( tdgr)  would contain a closed curve 2 in (X ~ S) U Q with 

x E 2. Since x is not essential for S, x is inessential for S, and by the argument in 

Remark 1, distinct points of S ~ Q would necessarily lie interior to 2 and exterior 

to ;t, contradicting the polygonal connectedness of S -~ Q. 

Similarly, if x,y are distinct essential lnc points for S~, and not for S, 

cl ( u  o~x) c~ c l ( u % )  -- ~ .  Again using connectedness and our hypothesis for case 

I 1, t J ~  contains some essential lnc point of S. 

Thus for each x essential for S~,, there corresponds a unique Xo essential for S 

and S has at least e + 1 essential lnc points. This contradiction implies that E is 

infinite, completing case I 1. 

Case I2. Suppose for some B in N, bdry B contains infinitely many inessential 

lnc points. Clearly no two inessential lnc points in B lie in the same member of 

,-~ {B}, for by an argument similar to that used in case I lb above, this would 

violate the polygonal connectedness of S ~ Q. Also, using Remark 1 and the 

polygonal connectedness of S ~ Q, at most one inessential lnc point qo in B can 

lie on the boundary of an unbounded component of X ,-, S. Thus to each q r qo 

in B, there corresponds a unique member Bq of ~ ~ {B}. Again, by connectedness 

of S ~ Q, the Bq sets are pairwise disjoint. For each Bq, let Cq denote the closure of  

a component of [(X ~ S) ,,, B] U Q containing Bq. The Cq sets are disjoint, and 

at most one C~ can be unbounded. To each bounded Cq, there corresponds a 

unique essential lnc point of S, and case I is finished. 

Case II. Assume that for some lnc point q of S, bdry S is not locally arc 

connected at q. Since X ~ S is open, for each positive integer n and each 1/n 

sphere D. about q, there is some ray from q containing x., y.  in S ~ D. for which 

( x . ,  y , )  ~_ x ~ s .  
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Case II1. For the moment, assume that we may choose x,, y. distinct from 

q. For  each n, let C.x, C.2 denote the closures of distinct components of  

[(X ~ S) ~ (x. ,y.)]  w Q  with (x.,y.) _ C.~, i = 1,2, We may select an infinite 

collection ff of  bounded disjoint C.~ sets, for otherwise it would violate the con- 

nectedness of  S ~ Q. To each C.~ in if, there corresponds a unique essential lnc 

point. Thus E is infinite. 

Case 112. Suppose that there is some integer k such that for all n > k, one of  

x.,  y.  must be q. Select Yo in S n Dk with (q, Yo) - X ~ S. Let Uo be the open 

sphere having center q, radius ] q - Yo ]. Since X ~ S is open, there is an open 

sector of  the disk Uo lying in X ~ S and containing (q, Yo). Let Vo denote the 

maximal open sector of  Uo having these properties. (Without loss of  generality, 

we may assume that the arc for Vo has length less than n, for this fails to occur at 

most once in our inductive construction.) I f  the segments [q, a], [q, b] and the arc 

ab bound Vo, then each of  (q, a], (q, b] contains some point of  S. Thus we may 

select points So, to in S n bdry Vo with (so, to) interior to Vo. Then (so, to) - X ~ S. 

Let Co be the closure of  a component of  [(X ~ S) ~ (So, to)] u Q with 

(So, to) - Co. 

Inductively, proceed as follows: Assume ~ ,  Cj are defined for 0 __< j < i. Since 

bdry S is not locally arc connected at q, there is some point Yt of  S n Dk+ i not on 

bdry Vj, 0 _-< j < i, and with (q, y~) _c X ~ S. Define V, st, t~ as previously shown. 

I f  Ci is the closure of  a component of  [(X ~ S) ~ (st, ti)] • Q with (st, ti) -~ C~, Cl 

may be selected so that it is disjoint from each C j, 0 _-< j < i. Since each bounded Ci 

contains an essential lnc point of  S and at most one C, is unbounded, there are 

infinitely many essential lnc points of  S, completing case II and finishing the 

proof. 

COROLLARY. I f  Q i$ countable, then card E > card N. 

It is interesting to note that N may be uncountable while E is countable, as 

Example 2 shows. 

EXAMPLE 2. Let S be the set in Fig. 2. Let x be the point (0,1), y the origin. 

Then every point of  the segment I-x, y) is an inessential lnc point of  S, while 

E = {(1/n, 0)} U {y}. 
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